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Optimum Coherent Linear Demodulation 

Abstract-Presented is the performance analysis for four types 
of linear-modulated communication systems where the message to 
be transmitted comes from one of two classes of stochastic proc- 
esses, and the additive channel noise is white and Gaussian. The 
two classes of stochastic processes which are used to modulate the 
transmitter are taken to be the “maximally flat” and “asymp- 
totically Gaussian” processes. Demodulation is accomplished at 
the receiver by coherent frequency translation using a noisy replica 
of the carrier and filtering the result with one of two types of Wiener 
filters. These are commonly referred to as the zero-lag (realizable) 
and infinite-lag (nonrealizable) Wiener filters. 

The four types of modulation considered are : linear-modulation, 
double-sideband (DSB); linear-modulation, double-sideband, 
suppressed carrier (DSB/SC); linear-modulation, single-sideband 
(SSB) ; and linear-modulation, single-sideband, suppressed carrier 
(SSB/SC). 

INTRODUCTION 
PROBLEM of current interest in the area of space A communications is that of utilizing one of the neigh- 

boring planets as a parasitic antenna for reflecting an 
analog signal between two widely separated (or the same) 
points on the earth and then detecting the transmitted 
signal. The question that immediately comes to mind to 
the system design engineer is that of selecting the modula- 
tion-demodulation technique which allows for the most 
unambiguous detection procedure at  the receiver. In  this 
paper we consider the following four types of linear 
modulation-demodulation techniques and compare each 
technique based on two classes of modulating spectra. 

The results obtained, however, may be applied to a wide 
class of problems which requires the transmission of analog 
information to a distant point, e.g., the transmission of 
analog data from a vehicle in orbit about the moon. 

The communication links under consideration are de- 
picted in Figs. l and 2. At the transmitter ( X M T R )  the 
kth random process of the ith message class ( m k i ( t ) ) ,  
(i = 1 , 2 ;  k = 1 , 2 ,  . . . , a) is used to modulate the trans- 
mitter. The output waveform, say Eni( t ) ,  is transmitted 
into the channel where additive white Gaussian noise of 
single-sided spectral density No W/(c/s) corrupts the trans- 
mitted waveform resulting in the received waveform 
#.,,(t) = Eni(t) + v ( t ) .  The detection procedure is carried 
out as follows: The observed data #ki(t) are multiplied by 
a noisy copy, say r ( t ) ,  of the transmitted carrier, and the 
resulting waveform v x r  ( t )  is filtered (after an appropriate 
transformation in the SSB systems) by one of two types of 
Wiener filters, Le., the appropriate linear filter that mini- 
mizes the mean-square error, [I]. A filter of type I works 
as follows. The input function q L f ( t )  [or zki( t ) ]  is recorded 
for a certain interval of time (theoretically for - a < t < 03 ) 

( t l  r (11 

Fig. 2. Communication link-SSB. 

Type I : linear-modulated, double-sideband (DSB) . 
Type I1 : linear-modulated, double-sideband, suppressed 

Type I11 : linear-modulated, single-sideband (SSB). 
Type IV: linear-modulated, single-sideband, suppressed 

carrier (DSB/SC). I 
carrier (SSB/SC). 
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and is then processed. For type I1 filtering we assume that 
the filter is physically realizable and may be constructed 
by a circuit containing resistances, inductances, and 
capacitances. In  certain applications, e.g., reflection of 
the analog signal from a neighboring planet, where delay 
in the demodulation procedure is of no importance, type I 
filtering may be practical. 

The advantages of type I1 filters are the simplicity with 
which they may be implemented and the rapidity with 
which the output data are delivered. The advantage of type 
I filters is the more complete use they make of the input 
signal; ronseqnently, the additive noise may be suppressed 
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more effectively. A comparison of both types of filtering 
action will be given (for two classes of message spectra) on 
the basis of a “signal-to-noise ratio” related to the Wiener 
error vs. a “signal-to-noise ratio” determined by initial 
design parameters. 

THE SIGNALING PROCESSES 
At the transmitter we presume we have available two 

classes of statioiiary time series with spectral densities 
denoted by &(w;  k)aiid & ( w ;  k ) ,  (IC = 1, 2 . . . , a). Class 
one is taken to be of the “maximally flat” form, i.e., 

where Kl(/c) is a constant that is cboscii so that the tinic 
series, which i t  rcpresctits, has unit variarirc, i.e., 

1 -  
S1(w; li) rlw = 1 

2T S-.. 
For thc class of “riiasiiiially flat” spwt 1-a 7 i , ( / i )  is givcii 1)y 

Kl(k)  = (./a) sinr (?r/l’/i) (2) 

and we have adopted thc notaiioii ihat siiic L = siii ,r/.r. 
This proress is both physically reasotiablc, niatlicniai ically 
convenient, and the integer k is a nieasiirc of the rate of 
spectruni cutoff, e.g., k = 1 correspoiids i o  a tlropof’f of 
0 dH per octave, k = 2 corresponds to 12 dl3 por ort:iv(’, 
etc. Further, a / 2 ~  may be considered to be the half-power 
frequeiicby of the time series /nk , ( t ) .  If k = 1 ,  Sl(w; 1)  is the 
spectral density occurring at the output of an 1 I C  cirviiit 
whose input is white Gaussiaii noise. l+’or li = m \VP liavc 

which is the iriipulsc power respoiisci o f  at I idcd lo\v-pass 
filter of bandwidth a j 2 ~  c/ s. 

Class two processes are taken to hc thr statioiiary 
“asymptotic.ally Gaussian” processc’s with a spc~at ral 
density given by 

arid I<2(lc) is adjusted such t’liat 

l a  
S2(w; k )  dw = 1 2, S-- 

Direct su1)stitiitioii of (3) into this cxprcssioli yields the 
value 

where I3(u, V) is the wcll-litiown beta f i i t i ( - t  ion. If li = 1, 
& ( w ;  I )  = &(w;  I) ,  while as li approaches itifiiiity iii (3) 

we have 

or 
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and, since Rmkt(0) = 1, 

(11) p - 1  
1 - &do) = P 

is the total average power transmitted. 

generate. In  this case we transmit 

tki(t) = &F[1 + m,ski(t)I exp ( j w A  ; k  = 1,2, . . . , m  (12) 

where the process ski(t) is generated in the following man- 
ner. 

Assume that the kth member of the ith process is being 
transmitted. The time series mxi(t) is passed through a 
Hilbert transforming (" A") filter whose output has been 
phase-shifted by 90" and represented by the waveform 
ihki(t). This process is added to the original process to 

produce the signal 

The SSB (type 111) signal is a bit more difficult to 

i =  1 , 2  

S,i(t) = mki( t )  + jGd0 (13) 

where (" A ")signifies the Hilbert transforming operation 
(see Fig. 2) .  The spectral properties of sk,(t) may be 
shown [ a ]  to be related to those of mk.(t) through 

4S,(w; k )  ; w > 0 
X,,,(W) = 2St('C'; IC); w = 0. (14) I 0 ; w < o  

I t  may also be shown that [ 2  1 
= R&(T) (15) 

(16) 

and 

E [m( T)&(S)  ] = E' [m( 7) ] E  [ h ( s )  3 
which says the process 7 4 7 )  arid its Hilbert transform are 
uncorrelated. If we further assume that both signaling 
processes have zero mean, it follows that the autocorrela- 
tion function of (12) is 

%(7) = 2p[1 + 7 ) & * h ! s ~ , ( 7 ) ]  Cxp ($JcT) (17) 

where use has beeii made of (12) and (16). Thus, for the 
SSB signal the total average transmitted power is 

P ,  = +R3(0) = [l + 2mU2]P.  (18) 

E&) = V'~PS,&) exp (ju,t> (19) 

For type IV modulation, i.e., SSB/SC, we transmit 

where s,,(t) is given by (13). The aiitocorrelntion of (19) is 
easily shown to be 

= 2PRskz (~ )  exp ( j w , ~ )  (20) 

P ,  = +R4(0) = 2P. (21) 

and the average total transmitted power is given by 

The real part of (6), (9), (12), and (19) represents the 
physical signal emitted by the transmitter when the aver- 
age power in the carrier is the same for all four types of 

modulation techniques. If, on the other hand, we have 
available for transmission only Pl watts, regardless of the 
type of modulation technique, we may write from (S), 
(11), (18), and (21) the set of "normalized" transmitted 
signals ( Eri(t) ] using complex carriers as 

f 9 D  

where we have assumed we are transmitting the kth 
member of the ith message class, i= 1, 2 ;  k=  1, 2, . . . , a. 
This is sufficient to characterize the transmitted wave- 
forms. Practical methods for impressing the signals mki. 
onto the carrier, Le., generation of the real parts of (22), 
are given in [ X I  and [4] while methods of signal reception 
are given in Coatas [.5] and Norgaard [6]. 

CHARACTERIZATION OF THE ADDITIVE NOISE 
We presumc that the complex additive noise ~ ( t )  is given 

by 

.(t) = nl(0 cxp ( jwct )  (23) 

where 

nl(t) = n(t) + j f i ( t )  

and n(t) and its Hilbert transform i ( t )  are white Gaussian 
noise processes possessing single-sided spectral densities 
of N o  W/cps. The physical additive noise process is the 
"real part" of the complex Gaussian process v ( t ) ,  i.e., 

no(t) = n( t )  (-os w,t - 2(t) sin w,t. 

R,Z,(T) = ( N o / W T ) .  

(24) 

The autocorrclatioii function of no(t) is easily shown to be 

In carrying out the frequency-translation operation at 
the receiver, one must use the real part of the received 
signals &%(t) .  If we multiply the noise process no(t) by the 
noisy stored carrier reference r ( t ) ,  we obtain 

no(t)r(t)  = (I/*) [n(t )  cos 9 + 2(t)  sin 91 + 
double frequency terms 

where we have assumed that the stored reference is given 
by 

r ( t )= * cos (w,t + 9) (25) 

and 9 is a random variable. For example, 9 may well 
represent the phase error of a phased-locked loop which is 
tracltiug the sinusoid sin w,t in the presence of additive 
white Gaussian noise. Several probability distributions 
have been derived in [7] and [S I ,  which govern the statis- 
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tics of this phase error. Neglecting the double-frequency 
terms (since the Wiener filter will not respond to them), 
we may represent the noise at the multiplier output by 

n’(t) = (l/d%?) [n(t) cos @ + k(t)  sin a]. (26) 

It remains to determine the statistics of n’(t). The auto- 
correlation function of the noise process n’(t) may be 
shown to be 

R,(t - S) = E[n’(t)n’(s)] 

= (No/2)6(t - S )  (27) 
by using (26) and the facts that n and f i  are uncorrelated 
and have zero mean. Equation (27) says that the noise 
present at, the multiplier output is white and Gaussian 
and has a single-sided spectral density of N o  W/(c/s). 

For reasons that will become obvious later, we compute 
the multiplier outputs qki ( t )  for all four lypes of rriodula- 
tion. To accomplish frequency translation in the physical 
sense we must use the physical waveforms received, Le., 
Re{ rLki(t) } ,  where Re denotes “real part.” For the DSB 
systems we have, using (22),  (24), (26) ,  and a little labor,l 

m ( t )  = m , d P t / l  + m,2mki(t) + n’(t); DSB 

q k i ( t ) =  dEmit(t) + n’(t); DSB/SC (28) 
and we have neglected the double-frequency and dc terms. 
In  the SSB cases we have for the multiplier outputs, 
neglecting the double-frequency and dc terms, 

where n”(t) =n(t) + A(t ) .  The input to the Wiener filter for 
the SSB systems is zkf( t )  = q k i ( t )  - f j K t ( t )  or 

X k i ( t )  = a [ n 1 , d 2 P t / 1  + 2 N 2 , 2 r n k f ( t )  + 71(1)];SSR (30) 

z?&) = d%?[ dF,m,,(t) + n(t)]  ; SSB/SC 

where n(t) is white Gaussian noise of single-sided spectral 
density No W/(c/s). Equations (28) and (30) represent, 
respectively, the inputs (signal plus noise) to the Wiener 
filters of Figs. 1 and 2 .  Note that, for the I>SB/SC and 
SSB/SC systeiris the signals to be filtered are essentially 
the same sinw the square root of two i n  (30) may be 
neglected because it effects both the signal arid noise. The 
spectral densities of the input process for the four types 
of modulation may be written from ( l ) ,  (3), (as), and (30). 
Neglecting the square root of two in (30) they are 

1 At this poiiit we have assiiinrd erfect cohrreiw at the receiver. 
The noisy plriise reference case wily t)c disciisstd litter. In the SSB 
s stems we liiivr iissiiincd that r ( t )  = lie[&( 1 + j I )  exp (ju~)]. 
&ice rit and m have equivalriit spectral drrisit itw, this serve8 to 
illiistrttte how either m or i-ii muy be rerovered itt the receiver and 
filtered with the same Wiciier filter. If 61 is dcxsirtd, oiie iniist forin 
7 + 4 instead of the difference. 

S1,(w; IC) = 61S1(0; IC); DSB 

S3%(w; k )  = 63S1(w; k ) ;  SSB 

Szt(w; k )  = 6zSz(w; k ) ;  DSBjSC 

(31) 
S~,(O; k )  = 64SZ(w; k )  ; SSB/SC 

for i = 1, 2, and all k.  The 6, factors are defined as 

61 = n2,*(1 + mu2)--1Pt = qJ’1; 6 2  = gzPt = P ,  

6 3  = 2mu2(1 + 2rnu2)-’Pt = g3Pl; 64 = g4Pt = P t  (32) 

while the average input signal power is 
1 P m  

p . =  - ~ S J i ( w ;  / c ) d w ; j  = 1, 2 ,  3 ,  4 
2a ‘J _ m  

which beconies, by using (31) aiid (32 ) ,  

P1 = t / L U Z ( 1  + ? r t , Z ) - l P t ;  Pz = Pt 

Ps = 2tt?,’(1 + 2//t(lz)-il’t; Pj = f’t. (33) 

THE WIENER ~ ~ K H O R  F O I ~  THE Two CLASSES OF 

SIGNALING SPECTMJMS 
The instantaneous value of the Wiener error may be 

written assuming the kth member of the ith stochastic 
class is being transmitted usiiig the j th  modulation tech- 
nique as (see Figs. 1 and 2)  

€it(t) = Y P t ( t )  - ~ ‘ f i J W L L r ( t ) ; . i  = 1, 2 ,  3, 4 

where the 6,’s are defined in ( 3 2 ) .  Sincc thc modulating 
signal and the noisck vary raiidomly with t h e ,  it is natural 
to characterize the “output nois(>” by its niean square 
intensity 

~~~ ~- 

(4J2 = [ Y k l ( t )  - 4 6 , ? t 1 L 1 ( t ) 1 2 .  

The Wiener filter (types I and II) ,  which minimizes the 
mean-square error for all menibers of the two classes of 
stochastic processes, is the filter that we use a t  the receiver 
for snioothing the observed data q n l ( t )  and zbl(l) .  ‘ l ’ l i ( x  filter 
functions (impulse responses) are deterniineti froi i i  thc 
spectral densities of the signal and noise; howevrr, we are 
not interested h t w  in the frrqu(my response's of the iiidi- 
vidual filters. 

Instead we shall be conc.eriicd primarily with drterniiii- 
ing lhe filtering act ioii, i.e., computation of the Wiener 
error a , f 2 ( k ) .  

For type I1 filters (nonrealizable) i t  may be shown that 
the mean-square error orcurriiig when one transmits the 
lcth member of the ith signal class using thej th  modulation 
technique is given by [I], 

-_ 

and we have assumed the input, noise is white aiid S,f(w; 
IC) are the spectral densities given by ( 3 1 ) .  

On the otber hand, for iype I filters (realizable), the 
mean-squarc error cncountcred (when the k t h  niernber of 
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the ith signal class is transmitted and 1 he j t  h inoddat ion 
technique employed at the transmitter) may be obtained 
from (34) by multiplying the spectral density in the denoni- 
inator by z and integrating with respect to x over the unit 
interval (0, 1). This procedure yields, for white noise with 
a single-sided spectral density of No W/(c/s,, 

PI which is the Wiener error obtained by Yovils and Jacksoii 
[9]. Equations (34) and (3.5) are remarkable in that the 

the individual filter functions. 
1 Wiener error may be evaluated without, having to compute 

PERFORMANCE OF TYPES I AND I1 FILTERS 
USING “?(lAXIM.4LLY FLAT” SPECTRA 

The Wiener error for all four types of modulation and 
all members of both signaling classes may be computed 
from (31) and (34), i.e., 

i =  1 , 2  

j = 1, 2, 3 , 4  

k = 1, 2,  . . .,a (36) 

where the constants 6, and g, are defined in (32). Letting 
i= 1 in (36) and substituting (1) into (36), i t  may he shown 
(see Appendix I) that 

u,i2(k) = 6,[1 + 26,Ki(k)/No](1/2L)-’ (37) 

where K,(k) is given by (2). Defining the SNR p as the 
ratio of the mean-squared value of the signal power P, 
[see (33)] to the Wiener error, we have2 

(7r)]1-(”’”’ (38) 
pJ1(k; I )  = 1 + 2sg,R sinc 

where R= P t / a N o  and the g,’s are given by (32).  For the 
“maximally flat” case we have for k = m 

[ 

p 3 i ( a  ; 1) = 1 + 2sg1R 

pj t (k ;  I) - [2sg,R sine ( ~ / 2 k ) ] ’ - ( ’ ~ ~ ~ ) .  

(39) 
I 

while for large values of the parameter R, (39) becomes 
I (40) 

The Wiener error for type I1 filters operating on signal 
class one is shown in Appendix I1 to be 

b 
I 

{ [l + 2 6 , K i ( k ) / N 0 ] ” ~ ~  - 1 ) .  kNo 
u,12(k) = __ 

Kl(k) 
The SNR p becomes 

The notation p (k; I )  signifies the SNR when the kth member 
of the i th  s tochazc process is being transmitted using the j t h  
modillation technique, and type I filters are used at  the receiver. 

which for large R is asymptotic to 

Of special interest is the case where k = 03. It may be 
shown that 

p,1( a; 11) = 2sg,R/111 [1+2sg,R] 

p j l (  a; 11) - 2sg,R/ln (:!ag,R). 

(43) 

(44) 

Comparison of (40) with (42) shows that, for large R and 
small k ,  type I filters have an SNR of approximately 2 k 
times the SNR of type I1 filters. As k approaches infinity, 
(39) and (44) show that the performance of type I1 filtering 
becomes inferior to type I filtering by a factor of In 
(2sg,R).  For k = l  and large R ,  type I filters outperform 
type I1 filters by a factor approximately 3 dB. 

which for large R is asymptotic to 

PERFORMANCE OF TYPES I AND I1 FILTERS USING 
[‘ASYMPTOTICALLY GAUSSIAN” SPECTRA 

Equation (3) may be substituted into (31) yielding the 
spectra for the four types of modulation. This result, when 
used in (34) and (35), gives the required Wiener error. 
Bemuse of the lengthy details and integration procedure 
required for general k ,  we evaluate the SNR p for the 
special case k = m . 

For type I1 filtering the Wiener error for thej th  modula- 
tion technique is given by 

aNo 
In [l + 4%‘GgjR exp ( -z2) ]dz 

and the SNR p becomes 

For type I filtering the Wiener error for the j th  type of 
modulation is easily shown to be 

1 m 2 Z/rg,Pt exp (-z2) 
dx -~ _ _  u322( a) = - 

2s J-.. 1 + 4v‘/?T.QfR exp ( - r 2 )  

and the SNR becomes 

- (46) 6 1 2  
P d ” ;  1) = 

exp ( - z 2 ) d x  lm 1 + 49, v%R exp ( -z2) 

Equations (4.5) and (46) may be integrated by expanding 
the integrand into an infinite series and integrating term 
by term. Difficulty arises, however, when dg,d/?rR > 1. 
A more tractable procedure l o  use is to integrate (45) and 
(46) numerically on a general purpose computer. 
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CALCULATED I ’ E L ~ F O I ~ M A N C E  ANI) COVPAI~ISON 
Plotted in Figs. 3 and 4 is the SNlt p vs. ihe basic 

paranicicr g3R, wlierc R = P,/wNu. Iii particular, Figs. 
3 aiid 4 have he i r  ploi ictl for = g, = 1 i.c., IXH/SC 
arid SSB/SC sysicwis. I ’ c ~ i ~ f o i ~ i i i a i i c ~ c ~  f o r  i l i c  othw iwo 
types of iiiodiilat i o i i  iiiay be o1)taiiicd froiii t l r c w  t i g ~ i r ~  
by rescdiiig i lw alwissa by q, ,  e.g., if ilic pc~iforiiiaiicv~ of 
the DSB sysiviii is iwlriiiwI,j = I : L i d  qI  = m,,?(l + ~ 1 , ~ ~ )  - 1  

[see (:U)]. 
Thc (*iirvw sliow t h t ,  i(y,aidl~w of tlic typv of aiiipli- 

tilde iiiodulat io i i  cwiploycd ai i l i c  traiisiiiit t (T, ilie larger 
k (for eitliei- (.lass of stodiast i c .  higiials), ilic Iwiier is tlie 
SNR p. This is clahily caplaiiietl nil a physical basis. 
For large k ,  eiicigy i i i  tliv sigiialiiig spcv*l i a  is siippivss(d 
in the higli-frequcvic.y rvgioiis m i t i  awciitiiateti i i i  iho low- 
frequency regioiis. Ilciiwl the Wiciiw filter, for a white 
noise input, acwpts a siiiallm amouiit of the iiipiii noise, 
aiid the SNlt p is larger. Note that, for large k aid Iz, 
type I fillers (iioiircalizablc) yield a value of p highly 
superior to type I1 filters (realizahlc). 111 physical sitiia- 
tioiis where delay i i i  tlic deiiiodulai ioii procdiirc is 
tolerable, it is qaitc cvidcwi that iyp(k I filicriiig sliould 
be eiiiploycd wiili either the SSl%/SC or the I>SH/SC 
system. If h idwidi l i  is a preiiiiiiiii, ilicii t l iv SSB/SC 
system should be sclccted over i hc IXR/SC system. All 
systems have i l i c  disatlvtLiitagc~ of rqiiiriiig a locd copy 
of the carrier ai tlic rcwivcr. Y o r  SSI% aiitl l)SB, a carrier 
compoiiciit is availahlc i i i  ilic ohscrvrd daia. Swli is not 
the (’use for SS13/8C airti 1>S13/8(’ ; cv)iiscclwiil ly, other 
nieaiis iniist bc cwiploycd for obtaiiiiiig (Iris iiiforinutioii 
a t  the rewivc’r. Tliis is o1)vioudy u disatlvaiiiugc of citlier 
of these sysicwis o v ( ~  thv 11SI3 s l i d  SSI3 syhicwis. 111 terms 
of trarisiiiissioii baiidwidtlr, US13 aid IX313/SC require 
equal amounts while SSB aiid SSU/SC rcquire only half 
as muvh as the DSB or DSH/SC system. 

20-  
MAX~MALLY FLAT SPECTRUM 1 
_ _ _ _ _  TYPE I FILTERING 1 

TYPE II FILTERING 

g4= I .  SSB/SC 

-12 - e  - 4  0 4 8 I? 16 20 

q R ,  db--, 

Fig. 4. Systeiii perforiii:~nce characteristics. 

If we view the paraiiieter g,R = glPt/uNO as a measure 
of t,he effectiveness of the jtli iiiodiilation technique, we 
firid that DSl3/SC mid SSB/SC perform equally well. 
011 this hasis, i l iv  1>813/8C aiid SSH/SC systems are 

[( 1 + % U ~ ~ ) ( % / / , ~ * )  ]dl% h t  tcr i h i  SSH. 111 t crnis of 
p,  for a givoii 1, a i d  f2, i i o  gciicwl (wiivliisioiis may be 
r c w l i c d ;  tlic ciirvcs i i i  Figs. :< :tiid 4 iiiiisln ho c+onsiilt ed. 

10 log,,, [w,L-y  1 + w , L 2 ) ]  h c ~ l l c r  Illall 11S13 s l i d  10 log,, 

1 ’E i t ~ o  ithi  A N CE U h  I v ( ; A No I hi I’HA s li 12. i s m  it IC N cr: 
O i i ~  iiiajor diflicdiy wit Ii iiiiplciiiciii iiig aiiy of the 

aiiiplit udc-deiiiodulal i o i i  syst (WIS st d i e d  h c w  is that of 
providing ilic iwc4vt.r with a copy of the transmitted 
carrier, i.v., syiivhroiiizai i o i )  of t l i v  trarisinittcr aiid 
ix4vc.r loval osc*ill:it o i x  ( ) t i ( >  prac.1 i w l  i i i w i i s  of whieving 
c-ai.ric.1. syiic*liiviiixat io11 i i i  tlic pas1 has bceii i o  employ a 
phase-loc-l<cd loop atl the. rewivvr. Evcii if oiie is willing 
to build a phase-locked loop at the receiver, there remains 
the questioii of what winponelit iii the received signal 
should oiic try to adiicvc carrier lock; e g . ,  in DSS/SC 
or SSl)/SC, the received spectrum does not contain a 
frcqueiicy componeiit oscillating at the carrier frequency. 
The best one can do (probably) is to trarismit a pilot 
varrier for use in coniiectioii with the phase-locked loop. 
Other methods are outlined in [3], [ 5 ] ,  aiid [6]. This, 
h o ~ c v e r ,  requires additional eiiergy. Oii the other hand, 
for DSI3 arid SSR there exists a carrier component in the 
rccGvetl signal spectrum. In fact, the power in this com- 
poiiciit is a fuiictioii of tlic modulatioii index 171, [see ( 2 2 ) ] .  
Wiih a lciiowledgc of this it is riot at all clear how one 
could niost effec%ively mechanize a phase-locked loop for 
syiicdironization purposes. Consequently, in what follows 
we shall assume that a phase-locked loop is used to derive 
the refereiice signal 

r ( t )  = a c o s  (w,t + @) (47) 
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where Qi is the phase error, and the volt,age control oscil- 
lator (VCO) in the phase-locked loop (PLL) is oscillating 
a t  the carrier frequency. Viterbi [7] and Tikhonov [8] 
have shown that the probability distribution p(Qi) for 
the phase error Qi is given by 

1 
p ( @ )  = -- exp ( a  cos ~ i )  

2 TI” ( a)  
r 

where I,(a) is the imaginary Hessel fuiiction evaluated 
a t  the SNR existing in the loop. Taking into consideration 
a phase error Qi rad/s, the factor cos Qi multiplies the signal 
components in (28) and (30). As already shown, the noise 
statistics remain unchanged. Hence, the spectral densities 
of (31) are multiplied by cos2 @ as well as the gl’s of (32) 
and the Wiener error; computed for the ideal reference 
signal, they become that value of the Wiener error, 
conditional on the fact that the phase error is 4, rad/s, 
i.e., u,,(k) = ujt(k1Qi). The total mean-square error 
that results when all members of the phase-error ensemble 
are taken into consideration becomes 

u,,2(k) = J= p(@)o,,2(IcI@)dQi. (49) 
- 7 r  

If one attempts to solve this equation using (48) for 
general I C ,  j, and i, a formidable integral is immediately 
encountered. Special cases, e.g., k = m , may be worked 
out exactly. For general j ,  k ,  and i, riumerical integration 
techniques could be applied to obtain values for pJ2 
(k;  I or II), but it appears, a t  this point, to he hardly 
worth the effort. 

An alternate procedure that gives some idea as to the 
effect of a noisy phase reference is to average over the 
phase error before filtering, i.e., define the input signal 
component of qkt ( t )  [or zkz(t)] by the following relationship. 

V d t )  = j-;= P ( @ ) V L d U @ M Q i .  (50) 

Carrying out this integral using (28) and (48) yields for 
the j th  type of modulatioii 

Performing the integration gives 

where 

and I l (a)  is the first-order Bessel function of imaginary 
I argument. Thus, for all types of modulat,ion the curves 

of Figs. 3 arid 4 still apply; however, the abscissa is now 
giR instead of g,R. If a = a, corresponding to perfect 
coherence, gi = g3 .  If a = 0, corresponding to a carrier 
whose phase variable is uiiiforinly distributed over an 
interval of length 2 8 ,  91. = 0 for all j .  For 0 < a < 
we find that g; < g 3 ,  e.g., if a = 10, corresponding to an 
SNR in the loop of 10 dB, we have gj = 0.90g3. If a = 1, 
corresponding to an SNR in the loop of zero dB, we find 
g; = 0.209,. Thus we see that a good (non-noisy) replica 
of the carrier is required a t  the receiver in order that the 
demodulation procedure be performed efficiently. 

<:OxCLUSIONS 

In this paper we have analyzcd four types of amplitude 
inoddat ion-deiiiodulat ion systems. The iiiforniation-bear- 
iug signal used to modulate the transniitter is generated 
from oiic of two classes of stochastic processes; the 
“maximally flat” arid the “asympotic*ally Gaussian” 
processes. We h a w  shown that syst em performance 
depends on the typc of Wiener filter (realizable or lion- 
realizable) used to smooth the noisy data and the modulat- 
ing spectrum. In  particular, for k = 1 and large R, the 
nonrealizable filter performs approximately 3 dB better 
than the realizable filter. For large k arid R the non- 
realizable filter performs approxiniately 10 log,, [In 2rg3R] 
dB better than the realizablc filter. 

It is shown that system performance is highly dependent 
on the parameter X: of the niodulatiori spectrum. In  fact, 
it is advisable to shape the modulating spectrum before 
transniission by nieaiis of a Butterworth filter or a series 
of isolated-cascaded RC networlts. Shaping of the modula- 
tion spectrum by a Butterworth filter proves to be more 
effective than that, of using a series of isolated-cascaded 
RC networks. 

Finally, we considered the situation where the receiver 
utilizes in the demodulation procedure a noisy replica 
of the transmitted carrier. If the carrier replica is derived 
a t  the receiver by means of a phase-locked loop we find 
that the Wiener error is least when the carrier replica is 
relatively noise free. For example, a SXR of 10 dB in 
the tracking loop reduces the effective input SNR a t  the 
demodulator input by 0.4 dB whereas an SNR of 
zero dB in the tracking loop reduces the effective input 
SXR by 7 dB. Finally, we point out that these results are 
compared in [lo] with similar results obtained for fre- 
quency demodulation using phase-locked frequency dis- 
criminators. 

APPENUIX I 

We wish to derive (38). From (1) and (36) we may write 

G,Ki(k)dw 

I t  . 
1 + (u/aIzk 

Rearranging and making the change of variable az = w 
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yields 

Performing the integration and simplifying gives the 
desired result. 

APPENDIX I1 

To derive (41) we make use of Leibnitz’s rule for 
integrals which depend on a parameter, say x. Leibnit,z’s 
rule says that, if the fuiictioii S(z, w )  is continuous arid has 
contiiiuous derivative df/bx in a domain of the z-w plane, 
then 

In other words, differcritiation arid integratioii may be 
interchanged. Using Leibiiitz’s rule we present two 
methods for evaluating integrals involving the logarithmic. 

Consider the functiorisJ(x, w )  = [l + h(w)]” ,  

(51) 

and the derivative g‘(x) = dg/dx, i.e., 

( 5 5 )  dx d.c 

Applying Leibi1it)z’s rule we have 

g’(z) = lm 11 + h ( w )  I” 111 [l + h(w)]dw. 

Evaluating g’(x) a t  x = 0 gives 

g’(0) = 1; 111 [ l  + h(w)]dw (56)  

whicih is the forni of ilic iiitcgral given iii ( :$5) .  
The second iiiethod that may be used for evaluatiiig 

(35) is toapply IAc4~iiiiz’s rule to the followiiig ititcgral, i.c., 

g ( x )  = 2 i,= Ill [I + .ch(w)]dw 

= ?& Ill [l + .ch(w)]dw (57) 

- h(w)dw 
g ( x )  = s, l+zh(w) (58) 

and integrating both sides with respect to x over the unit 
interval gives 

= s,= ln [l + h(w)]dw (59) 

which is the required form. Thus we evaluate (7) and then 
integrate the result over the unit interval ( 0 , l )  with respect 
to the parameter x.  In either method, h(w) is related to 
the message spect,ral density through 

h(w) = s j i ( w ;  k). 
Subst,it,ut,iiig for h(w) arid S,l(w; I C )  into (7) gives 

6 ( I C )  dw 

2x6 ,K1 ( I C )  . 
No[l + ( ~ / a ) ~ ~ l  

1 + -  

Carrying out the integration yields 

g(z) = 6,(1 + 2~S,Ki(k)/No)(”~”-’. 

The error ujt2(IC) is easily relat>ed to g(z) through 
1 

U j 1 2 ( k )  = ;; s, g(z)dx. 

Substitut iiig for g ( x )  and integrat ing gives 

and the SNK p is 

Calif., n1ay 1964. 


